The alternation hierarchy in fixpoint logic with chop is strict too
نویسنده
چکیده
Fixpoint Logic with Chop extends the modal μ-calculus with a sequential composition operator which results in an increase in expressive power. We develop a game-theoretic characterisation of its model checking problem and use these games to show that the alternation hierarchy in this logic is strict. The structure of this result follows the lines of Arnold’s proof showing that the alternation hierarchy in the modal μ-calculus is strict over the class of binary trees.
منابع مشابه
Fixpoint alternation: Arithmetic, transition systems, and the binary tree
We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.
متن کاملAlternation Is Strict For Higher-Order Modal Fixpoint Logic
We study the expressive power of Alternating Parity Krivine Automata (APKA), which provide operational semantics to Higher-Order Modal Fixpoint Logic (HFL). APKA consist of ordinary parity automata extended by a variation of the Krivine Abstract Machine. We show that the number and parity of priorities available to an APKA form a proper hierarchy of expressive power as in the modal μ-calculus. ...
متن کاملThree notes on the complexity of model checking fixpoint logic with chop
This paper analyses the complexity of model checking Fixpoint Logic with Chop – an extension of the modal μ-calculus with a sequential composition operator. It uses two known game-based characterisations to derive the following results: the combined model checking complexity as well as the data complexity of FLC are EXPTIMEcomplete. This is already the case for its alternation-free fragment. Th...
متن کاملThe μ-calculus alternation hierarchy collapses over structures with restricted connectivity
It is known that the alternation hierarchy of least and greatest fixpoint operators in the μ-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full μ-calculus. Our cu...
متن کاملThe \mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity
It is known that the alternation hierarchy of least and greatest fixpoint operators in the μ-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full μ-calculus. Our cu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Comput.
دوره 204 شماره
صفحات -
تاریخ انتشار 2006